# Remarks on the Linear Independence of Integer Translates of Exponential Box Splines 

Amos Ron*<br>Computer Sciences Department, 1210 W. Dayton St., University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.<br>Communicated by Charles K. Chui

Received July 16, 1990; revised August 30, 1991


#### Abstract

Following N. Sivakumar (J. Approx. Theory 64 (1991), 95-118), we study in this note the problem of the linear independence of the integer translates of an exponential box spline associated with a rational direction set. © 1992 Academic Press, Inc.


The following brief note reacts to the recent interesting paper of N. Sivakumar [S]. As such, we also adhere to the notations used there.

Throughout the discussion, we associate every multiset of $n$ $s$-dimensional non-trivial real vectors $\Xi=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ with an $s \times n$ matrix whose columns are $\xi_{1}, \ldots, \xi_{n}$, and use the notation $\Xi$ for this associated matrix as well. Given a matrix $\Xi$ and corresponding constants $\lambda:=$ $\left\{\lambda_{\xi}\right\}_{\xi \in \Xi} \subset \mathbb{C}$, the exponential box spline $B_{\Xi, \lambda}$ is defined $\left[R_{1}\right]$, as the distribution whose Fourier transform is

$$
\begin{equation*}
\hat{B}_{\Xi, \lambda}(x)=\prod_{\xi \in \Xi} \int_{0}^{1} e^{\left(\lambda_{\xi}-i \xi \cdot x\right) t} d t \tag{1}
\end{equation*}
$$

We refer to [S] and the references therein for further discussion of exponential box splines. Here, we are interested solely in dependence relations for the integer translates of $B_{\Xi, \lambda}$. Precisely, defining

$$
\begin{equation*}
K\left(B_{\Xi, \lambda}\right):=\left\{a: \mathbb{Z}^{s} \rightarrow \mathbb{C}: \sum_{j \in \mathbb{Z}^{s}} a(j) B_{\Xi, \lambda}(\cdot-j)=0\right\} \tag{2}
\end{equation*}
$$

we wish to know when $K\left(B_{\Xi, \lambda}\right)$ is trivial or at least finite-dimensional. We note that the sum in (2) is always well defined, since $B_{\overline{\Sigma, \lambda}}$ is compactly supported.

[^0]Whenever $K\left(B_{\Xi, \lambda}\right)=\{0\}$, the integer translates of $B_{\Xi, \lambda}$ are linearly independent. This question of linear independence has received major attention in box spline theory (see the discussion in [S]), with the analysis being focused, however, on the integer case, i.e., when $\Xi$ is an integral matrix. It seems that only [JS] and [S] (and also the example in the last section of [CR]) provide results concerning rational matrices $\Xi$. Furthermore, the examples in [JS] indicate that in the rational case there probably exists no satisfactory characterization for the linear independence of the integer translates.

Interesting sufficient conditions for $K\left(B_{z, \lambda}\right)$ being trivial or finite-dimensional have been obtained in [S]. Our aim here is to derive slightly more general results, and with the aid of a different approach: while the proofs in [S] (as well as in [JS]; see also the approach in [J]) proceed by an involved induction on $s$ and $n$, and require as a preparation a certain transformation to be applied to $\Xi$, here we make use of observations and arguments from the theory of the integer case. In addition, this approach links the two main results of [S].

We start by recalling from [S] the notion of extendibility:
Definition. Let $Y \subset \mathbb{Q}^{s}$ be a linearly independent set of $1 \leqslant k \leqslant s$ vectors. We say that $Y$ is extendible (or possesses property $E$ ) if there is a matrix $X_{s \times s}$ with an integral inverse whose first $k$ columns constitute $Y$. Also, for an arbitrary $s \times n$ matrix $\Xi$, we say that $\Xi$ is fully extendible if every linearly independent subset $Y$ of $\Xi$ is extendible.

Note that $\Xi$ is fully extendible if and only if every basis $Y$ of the column span of $\Xi$ is extendible.

As in [JS] and [S], we follow [ $\mathrm{R}_{2}$ ] and introduce, for a compactly supported distribution $\psi$, the set

$$
\begin{equation*}
N(\psi)=\left\{\theta \in \mathbb{C}^{s}: \hat{\psi}(\theta+2 \pi \alpha)=0, \forall \alpha \in \mathbb{Z}^{s}\right\} . \tag{3}
\end{equation*}
$$

(4) Theorem (Sivakumar [S]). Let $B_{\Xi, \lambda}$ be an exponential box spline with a rational set of directions. Then the integer translates of $B_{\Xi, \lambda}$ are linearly independent if the following two conditions hold:
(a) $\Xi$ is fully extendible;
(b) $\hat{\boldsymbol{B}}_{\Xi, i}$ vanishes nowhere on the set $-i \Theta_{\lambda}(\boldsymbol{\Xi})$, with

$$
\begin{equation*}
\Theta_{\lambda}(\Xi):=\left\{\phi \in \mathbb{C}^{s}: \operatorname{span}\left\{\xi \in \Xi: \xi \cdot \phi=\lambda_{\xi}\right\}=\operatorname{span} \Xi\right\} . \tag{5}
\end{equation*}
$$

Proof. By $\left[\mathrm{R}_{2}\right.$, Theorem 1.1], $K\left(B_{\Xi, \lambda}\right)=\{0\}$ if and only if $N\left(B_{\Xi, \lambda}\right)=\varnothing$. Assume that $\theta \in \mathbb{C}^{s}$. To show that $\theta \notin N\left(B_{\Xi, \lambda}\right)$, we need to find $\alpha \in \mathbb{Z}^{s}$ such that $\hat{B}_{\Xi, \lambda}(\theta+2 \pi \alpha) \neq 0$. The argument for that follows closely the proof of Theorem 1.4 in $\left[\mathrm{R}_{2}\right]$.

For each $\xi \in \Xi$ we set

$$
\begin{equation*}
v_{\xi}:=\frac{i \lambda_{\xi}+\theta \cdot \xi}{2 \pi} \tag{6}
\end{equation*}
$$

In view of (1), the desired $\alpha \in \mathbb{Z}^{s}$ should satisfy

$$
\begin{equation*}
v_{\xi}+\alpha \cdot \xi \notin \mathbb{Z} \backslash 0, \quad \forall \xi \in \Xi \tag{7}
\end{equation*}
$$

Let $Y$ be a maximally linearly independent subset of $\left\{\xi \in \Xi: v_{\xi} \in \mathbb{Z}\right\}$ (the possibility $Y=\varnothing$ is not excluded). By condition (a), $Y$ is extendible to a matrix with integral inverse, and therefore the system

$$
v_{y}+? \cdot y=0, \quad y \in Y
$$

admits an integral solution $?=\alpha_{1}$. We now replace each $v_{\xi}(\xi \in \Xi)$ by $v_{\xi}^{1}:=v_{\xi}+\alpha_{1} \cdot \xi$. Note that $v_{y}^{1}=0$ for every $y \in Y$. We need to overcome the difficulty occurring when some of the $\nu_{\xi}^{1}$ 's are non-zero integers. We first show that this is impossible for $\xi \in$ span $Y$.

Let $\xi \in(\operatorname{span} Y) \cap \Xi, \xi=\sum_{y \in Y} \beta_{y} y$. Choose $\phi \in \Theta_{\lambda}(\Xi)$ such that $\lambda_{y}-\phi \cdot y=0$ for every $y \in Y$. Denoting $\theta^{\prime}:=\theta+2 \pi \alpha_{1}$, we have $2 \pi v_{\xi}^{1}=$ $i \lambda_{\xi}+\theta^{\prime} \cdot \xi$ for every $\xi \in \Xi$, hence for every $y \in Y, \theta^{\prime} \cdot y=-i \lambda_{y}$ (since $v_{y}^{1}=0$ ); therefore

$$
\begin{align*}
\boldsymbol{v}_{\xi}^{1} & =\frac{i \lambda_{\xi}+\theta^{\prime} \cdot \sum_{y \in Y} \beta_{y} y}{2 \pi} \\
& =\frac{i \lambda_{\xi}+\sum_{y \in Y} \beta_{y} \theta^{\prime} \cdot y}{2 \pi} \\
& =\frac{i \lambda_{\xi}-i \sum_{y \in Y} \beta_{y} \lambda_{y}}{2 \pi} \\
& =\frac{i \lambda_{\xi}-i \sum_{y \in Y} \beta_{y} \phi \cdot y}{2 \pi} \\
& =\frac{i\left(\lambda_{\xi}-\phi \cdot \xi\right)}{2 \pi} \notin \mathbb{Z} \backslash\{0\} \tag{8}
\end{align*}
$$

where in the last step we have used condition (b) (if $i\left(\lambda_{\xi}-\phi \cdot \xi\right) / 2 \pi \in$ $\mathbb{Z} \backslash\{0\}$, then, by (1), $\hat{B}_{\xi, \lambda_{\xi}}(-i \phi)=0$, a fortiori $\left.\hat{B}_{\Xi, \lambda}(-i \phi)=0\right)$.

Let $Y_{1}^{\prime}$ be the set of all $\xi \in \Xi$ that satisfy $v_{\xi}^{1} \in \mathbb{Z} \backslash\{0\}$. If $Y_{1}^{\prime} \neq \varnothing$, then, with $\xi \in Y_{1}^{\prime}$ chosen arbitrarily, we conclude from the previous argument that $Y_{1}:=Y \cup\{\xi\}$ is still linearly independent. Replacing $Y$ by $Y_{1}$, we repeat the previous step: we find $\alpha_{2} \in \mathbb{Z}^{s}$ that satisfies $v_{y}^{1}+\alpha_{2} \cdot y=0$ for every $y \in Y_{1}$, then define $v_{\xi}^{2}:=v_{\xi}^{1}+\alpha_{2} \cdot \xi$ for every $\xi \in \Xi$, and conclude
that if $Y_{2}^{\prime}:=\left\{\xi \in \Xi: \nu_{\xi}^{2} \in \mathbb{Z} \backslash\{0\}\right\} \neq \varnothing$, then the set $Y_{1} \cup\{\xi\}$ is linearly independent, with $\{\xi\}$ being arbitrarily chosen from $Y_{2}^{\prime}$. After finitely many (say, $j$ ) steps we must get $Y_{j}^{\prime}=\varnothing$, such that all $\nu_{\xi}^{j}$ are not in $\mathbb{Z} \backslash\{0\}$. Since

$$
v_{\xi}^{j}=v_{\xi}+\left(\sum_{k=1}^{j} \alpha_{k}\right) \cdot \xi
$$

we conclude (in view of (7)) that $\alpha:=\sum_{k=1}^{j} \alpha_{k}$ is the required integer.
Next we consider the question of the finite dimensionality of $K\left(B_{\Xi, \lambda}\right)$. The results below will show that in essence this question is not harder than the linear independence one. It is the lack of a good characterization of the latter case that prevents us from establishing a good characterization for the finite dimensionality problem.

We first recall the following fact. The "only if" implication of it follows from [ $\mathrm{R}_{2}$, Theorem 1.1], while the "if" implication has been proved in [DJM, Theorem 2.1].
(9) Result. Let $\psi$ be a compactly supported distribution. Then $K(\psi)$ is finite-dimensional if and only if $N(\psi) / 2 \pi \mathbb{Z}^{s}$ is finite.

The following extends a result which has been (implicitly) proved in [ $\mathrm{DM}_{1}$ ] for polynomial box splines with an integral set of directions. For exponential box splines with an integral set of directions $\Xi$, a weaker form of this result follows from [ $\mathrm{DM}_{2}$, Theorem 7.2]; see also Theorem 4.2 of [S]. Note that we do not assume $\Xi$ in the theorem to be spanning.
(10) TheOrem. Let $B_{\Xi, \lambda}$ be an exponential box spline with a rational set of directions. Then $K\left(B_{\Xi, \lambda}\right)$ is infinite-dimensional if and only if $K\left(B_{Y, \lambda_{Y}}\right)$ (with $\lambda_{Y}:=\left\{\lambda_{y}\right\}_{y \in Y}$ ) is non-trivial for some subset $Y \subset \Xi$ of rank $<s$.

Proof. Suppose first that for some non-spanning $Y \subset \Xi$ and $\theta \in \mathbb{C}^{s}$, $\theta \in N\left(B_{Y, \lambda_{Y}}\right)$. Since $\hat{B}_{Y, \lambda_{Y}}$ is constant along directions orthogonal to span $Y$, it follows that $\theta+x \in N\left(B_{Y, \lambda_{Y}}\right)$ for every $x \perp$ span $Y$, hence $N\left(B_{Y, \lambda_{Y}}\right) / 2 \pi \mathbb{Z}^{s}$ is infinite, and so is $N\left(B_{\Xi, \lambda}\right) / 2 \pi \mathbb{Z}^{s}$, since $\hat{B}_{Y, \lambda_{Y}}$ divides $\hat{B}_{\Xi, \lambda}$. We conclude from (9) Result that $K\left(B_{\Xi, \lambda}\right)$ is infinite-dimensional.

Conversely, assume that $K\left(B_{Y, \lambda_{Y}}\right)$ is trivial for every non-spanning $Y \subset \Xi$. Choose a positive integer $m$ such that $m \xi \in \mathbb{Z}^{s}$ for every $\xi \in \Xi$. Let $\theta \in N\left(B_{\Xi, \lambda}\right)$. By our assumption, $K\left(B_{Y, \lambda_{Y}}\right)=\{0\}$ for every non-spanning $Y$, or equivalently $\left[\mathrm{R}_{2}\right], N\left(B_{Y, \lambda_{Y}}\right)=\varnothing$ for such $Y$. Therefore, there must exist $s$ linearly independent elements $X=\left\{\xi_{1}, \ldots, \xi_{s}\right\} \subset \Xi$ and corresponding $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subset \mathbb{Z}^{s}$ such that

$$
\hat{B}_{\xi_{j}, \lambda_{j}}\left(\theta+2 \pi \alpha_{j}\right)=0, \quad j=1, \ldots, s
$$

which implies (1), that

$$
\begin{equation*}
\lambda_{\xi_{j}}-i \xi_{j} \cdot\left(\theta+2 \pi \alpha_{j}\right) \in 2 \pi i \mathbb{Z}, \tag{11}
\end{equation*}
$$

and hence also, with $y_{j}:=m \xi_{j}$ and $\mu_{j}:=m \lambda_{\xi_{j}}$, that

$$
\begin{equation*}
\mu_{j}-i y_{j} \cdot\left(\theta+2 \pi \alpha_{j}\right) \in 2 \pi i \mathbb{Z} \tag{12}
\end{equation*}
$$

Further, $y_{j} \cdot \alpha_{j} \in \mathbb{Z}$, so we finally obtain

$$
\begin{equation*}
\mu_{j}-i y_{j} \cdot \theta \in 2 \pi i \mathbb{Z}, \quad j=1, \ldots, s . \tag{13}
\end{equation*}
$$

It is not hard to prove that (13) admits only finitely many solutions $\bmod 2 \pi \mathbb{Z}^{s}$. (In fact, [DM 2 , Lemma 6.1] and [BR, Lemma 5.1] show that there are exactly $\operatorname{det}(m X)$ solutions $\bmod 2 \pi \mathbb{Z}^{s}$ for (13), regardless of the choice of the $\mu$ 's and subjected only to the restriction that $(m X) \subset \mathbb{Z}^{s}$ is a basis for $\mathbb{R}^{s}$.) Thus, since the number of bases for $\mathbb{R}^{s}$ selected from $\Xi$ is finite, we obtain that necessarily $N\left(B_{\Xi, \lambda}\right) / 2 \pi \mathbb{Z}^{s}$ is finite, and our claim follows from (9) Result.

Note that the argument in the first part of the proof is valid for a more general setting: if $\sigma=\psi * \tau$, all being compactly supported and $\psi$ is a measure supported on a proper linear manifold of $\mathbb{R}^{s}$, then $K(\sigma)$ is finitedimensional only if $K(\psi)=\{0\}$.
Combining (4) Theorem and (10) Theorem, we recover the second main result of [S]:
(14) Corollary (Sivakumar [S]). Let $B_{\Xi, \lambda}$ be an exponential box spline with a rational set of directions $\Xi$. Then $K\left(B_{\Xi, \lambda}\right)$ is finite-dimensional if for every non-spanning subset $Y \subset \Xi$, the exponential box spline $B_{Y, \lambda_{Y}}$ satisfies conditions (a) and (b) of (4) Theorem.

The proof is now evident: if $Y \subset \Xi$ satisfies conditions (a) and (b), then by (4) Theorem, $K\left(B_{Y, i_{Y}}\right)=\{0\}$. This being true for every non-spanning $Y \subset \Xi$, (10) Theorem implies that $K\left(B_{\Xi, \lambda}\right)$ is finite-dimensional.

## References

[BR] A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces, Trans. Amer. Math. Soc. 309 (1988), 683-710.
[CR] C. K. Chui and A. Ron, On the convolution of a box spline with a compactly supported distribution: Linear independence for the integer translates, Canad. J. Math. 4(1) (1991), 19-33.
[DM $\mathrm{DM}_{1}$ ]. Dahmen and C. A. Micchelli, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), 305-320.
[ $\mathrm{DM}_{2}$ ] W. Dahmen and C. A. Micchelli, On multivariate E-splines, Adv. Math. 76 (1989), 33-93.
[DJM] W. Dahmen, R. Q. Jia, and C. A. Michelli, On linear dependence relations for integer translates of compactly supported distributions, Math. Nachr., to appear.
[J] R. Q. JIA, Linear independence of translates of a box spline, J. Approx. Theory 40 (1984), 158-160.
[JS] R. Q. Jia and N. Sivakumar, On the linear independence of integer translates of box splines with rational directions, Linear Algebra Appl. 135 (1990), 19-31.
[R $\mathrm{R}_{1}$ ] A. Ron, Exponential box splines, Constr. Approx. 4 (1988), 357-378.
$\left[\mathrm{R}_{2}\right] \quad$ A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), 297-308.
[S] N. Sivakumar, Concerning the linear dependence of integer translates of exponential box splines, J. of Approx. Theory 64 (1991), 95-118.


[^0]:    * Supported in part by the United States Army under Contract No. DAAL03-87-K-0030 and by the National Science Foundation under Grant No. DMS-9000053.

